MATH4060 Solution 2

February 2023

Exercise 5

Similar to arguments in the previous homework, we observe that F_{α} is entire because $\alpha > 1$ enables us to exhibit $F_{\alpha}(z)$ as the uniform limit of $\int_{-n}^{n} e^{-|t|^{\alpha}} e^{2\pi i z t} dt$ (as $n \to \infty$) in every horizontal strip S_b . To prove that F_{α} has growth order $\leq \alpha/(\alpha - 1)$, we first show that there is some constant c > 0 such that

$$-\frac{|t|^{\alpha}}{2} + 2\pi|z||t| \le c|z|^{\alpha/(\alpha-1)}$$
(1)

for any $t \in \mathbb{R}$ and $z \in \mathbb{C}$. This is in fact a consequence of Young's inequality, but we can derive it more directly as follows: Let $\alpha' = \alpha/(\alpha - 1)$. Note that for $r, s \ge 0$, we have $rs \le r^{\alpha} + s^{\alpha'}$, because if $r^{\alpha} \ge rs$, then we are done, otherwise $r^{\alpha} < rs$ and so $r^{\alpha-1} < s$ and $r = r^{(\alpha-1)(\alpha'-1)} < s^{\alpha'-1}$. Multiplying by s shows that $rs < s^{\alpha'}$. Now take r = |t| and $s = 4\pi |z|$.

Using (1), we compute that

$$|F_{\alpha}(z)| \leq \int_{-\infty}^{\infty} e^{-|t|^{\alpha}/2} e^{-|t|^{\alpha}/2 + 2\pi|z||t|} dt \leq e^{c|z|^{\alpha/(\alpha-1)}} \int_{-\infty}^{\infty} e^{-|t|^{\alpha}/2} dt = C e^{c|z|^{\alpha/(\alpha-1)}}.$$

So the growth order of F_{α} is $\leq \alpha/(\alpha - 1)$. On the other hand, take z = -ix, x > 0 to see that for any b > a > 0,

$$|F_{\alpha}(-ix)| = \int_{-\infty}^{\infty} e^{-|t|^{\alpha}} e^{2\pi xt} dt \ge \int_{a}^{b} e^{-t^{\alpha}} e^{2\pi xt} dt \ge (b-a) e^{-b^{\alpha}} e^{2\pi xa}.$$

Setting $b = x^{1/(\alpha-1)}$ and $a = x^{1/(\alpha-1)} - 1$ shows that

$$|F_{\alpha}(-ix)| \ge e^{(2\pi-1)x^{\alpha/(\alpha-1)}-2\pi x} \ge C'e^{c'x^{\alpha/(\alpha-1)}}$$

for some constant C', c' > 0 (independent of x) because $\alpha/(\alpha - 1) > 1$. Then take $x \to \infty$ to see that the growth order of F_{α} is at least $\alpha/(\alpha - 1)$.

Exercise 6

Taking z = 1/2 in the product formula $\sin \pi z/\pi = z \prod_{m=1}^{\infty} (1 - z^2/m^2)$, we have

$$\frac{1}{\pi} = \frac{1}{2} \prod_{m=1}^{\infty} \left(1 - \frac{1}{4m^2} \right) = \frac{1}{2} \prod_{m=1}^{\infty} \frac{(2m-1)(2m+1)}{4m^2}.$$

Exercise 9

Note that for |z| < 1 fixed,

$$(1-z)\prod_{k=0}^{N}(1+z^{2^{k}}) = 1-z^{2^{N+1}} \to 1$$

as $N \to \infty$, so $(1-z) \prod_{k=0}^{\infty} (1+z^{2^k}) = 1$ as required.

Exercise 13

It is easy to see that $e^z - z$ has growth order 1. So if $e^z - z$ has only finitely many zeros, we can use Hadamard's theorem to write $e^z - z = e^{az}p(z)$ for some constant a and polynomial p(z). Note that a is nonzero (otherwise $e^z = p(z) + z$). Taking derivative twice, we have $e^{(a-1)z}(a^2p(z) + 2ap'(z) + p''(z)) = 1$. By the fundamental theorem of algebra, since $a^2 \neq 0$, p(z) must be a constant, say p(z) = b. But $a^2be^{(a-1)z} = 1$ implies that a = b = 1. So $e^z - z = e^{az}p(z) = e^z$, which is impossible.

Note that one can show $e^z - q(z) = 0$ has infinitely many solutions for any nonzero polynomial q(z) by the same argument (but taking derivative $\deg(q) + 1$ times).