MATH4060 Solution 2

February 2023

Exercise 5

Similar to arguments in the previous homework, we observe that F_{α} is entire because $\alpha>1$ enables us to exhibit $F_{\alpha}(z)$ as the uniform limit of $\int_{-n}^{n} e^{-|t|^{\alpha}} e^{2 \pi i z t} d t$ (as $n \rightarrow \infty$) in every horizontal strip S_{b}. To prove that F_{α} has growth order $\leq \alpha /(\alpha-1)$, we first show that there is some constant $c>0$ such that

$$
\begin{equation*}
-\frac{|t|^{\alpha}}{2}+2 \pi|z||t| \leq c|z|^{\alpha /(\alpha-1)} \tag{1}
\end{equation*}
$$

for any $t \in \mathbb{R}$ and $z \in \mathbb{C}$. This is in fact a consequence of Young's inequality, but we can derive it more directly as follows: Let $\alpha^{\prime}=\alpha /(\alpha-1)$. Note that for $r, s \geq 0$, we have $r s \leq r^{\alpha}+s^{\alpha^{\prime}}$, because if $r^{\alpha} \geq r s$, then we are done, otherwise $r^{\alpha}<r s$ and so $r^{\alpha-1}<s$ and $r=r^{(\alpha-1)\left(\alpha^{\prime}-1\right)}<s^{\alpha^{\prime}-1}$. Multiplying by s shows that $r s<s^{\alpha^{\prime}}$. Now take $r=|t|$ and $s=4 \pi|z|$.

Using (1), we compute that

$$
\left|F_{\alpha}(z)\right| \leq \int_{-\infty}^{\infty} e^{-|t|^{\alpha} / 2} e^{-|t|^{\alpha} / 2+2 \pi|z||t|} d t \leq e^{c|z|^{\alpha /(\alpha-1)}} \int_{-\infty}^{\infty} e^{-|t|^{\alpha} / 2} d t=C e^{c|z|^{\alpha /(\alpha-1)}}
$$

So the growth order of F_{α} is $\leq \alpha /(\alpha-1)$. On the other hand, take $z=-i x, x>0$ to see that for any $b>a>0$,

$$
\left|F_{\alpha}(-i x)\right|=\int_{-\infty}^{\infty} e^{-|t|^{\alpha}} e^{2 \pi x t} d t \geq \int_{a}^{b} e^{-t^{\alpha}} e^{2 \pi x t} d t \geq(b-a) e^{-b^{\alpha}} e^{2 \pi x a}
$$

Setting $b=x^{1 /(\alpha-1)}$ and $a=x^{1 /(\alpha-1)}-1$ shows that

$$
\left|F_{\alpha}(-i x)\right| \geq e^{(2 \pi-1) x^{\alpha /(\alpha-1)}-2 \pi x} \geq C^{\prime} e^{c^{\prime} x^{\alpha /(\alpha-1)}}
$$

for some constant $C^{\prime}, c^{\prime}>0$ (independent of $\left.x\right)$ because $\alpha /(\alpha-1)>1$. Then take $x \rightarrow \infty$ to see that the growth order of F_{α} is at least $\alpha /(\alpha-1)$.

Exercise 6

Taking $z=1 / 2$ in the product formula $\sin \pi z / \pi=z \prod_{m=1}^{\infty}\left(1-z^{2} / m^{2}\right)$, we have

$$
\frac{1}{\pi}=\frac{1}{2} \prod_{m=1}^{\infty}\left(1-\frac{1}{4 m^{2}}\right)=\frac{1}{2} \prod_{m=1}^{\infty} \frac{(2 m-1)(2 m+1)}{4 m^{2}}
$$

Exercise 9

Note that for $|z|<1$ fixed,

$$
(1-z) \prod_{k=0}^{N}\left(1+z^{2^{k}}\right)=1-z^{2^{N+1}} \rightarrow 1
$$

as $N \rightarrow \infty$, so $(1-z) \prod_{k=0}^{\infty}\left(1+z^{2^{k}}\right)=1$ as required.

Exercise 13

It is easy to see that $e^{z}-z$ has growth order 1 . So if $e^{z}-z$ has only finitely many zeros, we can use Hadamard's theorem to write $e^{z}-z=e^{a z} p(z)$ for some constant a and polynomial $p(z)$. Note that a is nonzero (otherwise $e^{z}=p(z)+z$). Taking derivative twice, we have $e^{(a-1) z}\left(a^{2} p(z)+2 a p^{\prime}(z)+p^{\prime \prime}(z)\right)=1$. By the fundamental theorem of algebra, since $a^{2} \neq 0, p(z)$ must be a constant, say $p(z)=b$. But $a^{2} b e^{(a-1) z}=1$ implies that $a=b=1$. So $e^{z}-z=e^{a z} p(z)=e^{z}$, which is impossible.

Note that one can show $e^{z}-q(z)=0$ has infinitely many solutions for any nonzero polynomial $q(z)$ by the same argument (but taking derivative $\operatorname{deg}(q)+1$ times).

